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1 Introduction to Distributed Data Streams

The topic of (single) streams of data has had much coverage: for more information, see other surveys
such as [Mut05, BBD+02, GGR02]. There has been less explicit attention given to distributed data
streams, although many techniques from single streams naturally distribute. The survey of Muthukr-
ishnan lays out the important data models for describing streams: arrivals only (cash-register model)
and arrivals and departures (turnstile model) [Mut05]. Different models for distributed streaming
include one-shot computation, gossip-based computation, and continuous computation. Early work
defining the one-shot model is due to Gibbons and Tirthapura [GT01], and a formalization of the model
in the context of the MapReduce computations is due to Feldman et al. [FMS+08]. For the gossip model,
see [KDG03], and for the continuous model, see the survey [Cor11] and later lecture.

Some initial examples of methods in the one-shot distributed model include distributed sampling [NGSA04];
entropy estimation [CCM07]; finding frequent items/heavy hitters [MG82, ACH+12]; fingerprints for
equality testing [MR95]; and Bloom Filters for set membership [BM04].
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2 Sketch Data Structures and Concentration Bounds

Many results in distributed streaming arise in the context of sketch algorithms, which are analyzed
using probabilistic concentration bounds [MR95, MU05]. A general survey on sketching techniques is
given in [Cor11].

Given a (distributed) stream of items i, let fi denote the total number of occurrences of i in the
stream. The kth frequency moment Fk is defined as Fk =

∑
i |fi|k. Important cases are F0, the number

of items with non-zero frequency; F2, the sum of the squares of the frequencies; and F∞, the largest
frequency. The Count-Min sketch relies only on the Markov inequality to provide accurate estimates of
item frequencies and F∞ [CM05a]. The AMS (Alon-Matias-Szegedy) sketch estimates the second fre-
quency moment F2 (the sum of squared frequencies), and is analyzed via the Chebyshev and Chernoff
bounds [AMS96, CCFC02].

The problem of estimating the quantity F0, also known as distinct counting, is studied in [FM83,
Gib01]. An approach based on hashing and tracking the smallest observed hash values is due to Bar-
Yossef et al. [BYJK+02]. Motivated by distributed computation, generalizations of these data struc-
tures have been used to build duplicate-resilient aggregates in [CLKB04, CM05b]. Range Efficient prob-
lems occur when the input arrives as a series of ranges of values [a . . . b], and must be processed effi-
ciently [PT07, RD06].
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3 Lp Sampling and Stream Verification

Lp Sampling via sketches. Lp sampling is a recently introduced technique, which asks to draw a
sample i with probability (approximately) proportional to |fi|p/‖f‖pp. Several methods to perform this
sampling have been proposed [MW10, JST11]. For L0 sampling (sample from the set of items with non-
zero frequency), other methods are known [FIS05, CMR05]. This can be applied to build sketches for
graph properties such as connectivity, bipartiteness, and sparsest cut [AGM12a, AGM12b]. Methods
for L2 sampling can also be applied to estimate Fk accurately for any k ≥ 3 [CK04, AKO11].

Stream Verification. When a large computation is outsourced, it is desirable to have some way to
check the correctness of the returned results, without having to duplicate the entire computation. This
leads to the area of verification. Initial results in the streaming setting were provided by Chakrabarti et
al. [CCM09] for vector and matrix computations, and for graph computations by Cormode et al. [CMT10].
These results have been generalized to multiple rounds of interaction between a prover and a veri-
fier [CTY12]. A general result shows any NP problem has a proof protocol of polynomial size [GKR08],
and this protocol has been implemented in the streaming setting [CMT12].
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4 Continuous Distributed Monitoring

In the model of continuous distributed monitoring, k observers each see a stream of observations. Their
goal is to work together to compute a function of the union of their observations. A longer survey of
the area is given in [Cor11]. A first problem is to count when τ events have been observed can easily
be solved with O(k2 log τ) messages [KCR06]. The dependence on k can be improved to k, and indeed
made indpendent of k when randomization is allowed [CMY08]. A general “geometric approach”
allows any function to be monitored in this setting based on breaking the global function into pieces
which can be monitored locally [SSK06, SSK08].

Different approaches are needed when the goal is to extract a set of items from the input, such as in
drawing a sample. This has resulted in elegant protocols for sampling [CMYZ10, TW11]. Other work
has used different approaches to reduce the cost of protocols, such as building prediction models using
sketches [CGMR05] and tracking only recent updates in a sliding window [CLLT10]. Applications to
distributed gaming are discussed in [HM09].
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5 Lower Bounds.

Since its introduction by Yao, communication complexity [Yao79, KN97] has proven to be a powerful
technique for proving lower bounds for a variety of computation models. Two problems in random-
ized communication complexity that are “hard” (require Ω(n) communication) lead to many streaming
lower bounds:
INDEX: Alice holds string x of length n, Bob holds index y ∈ [n], and Bob must output the yth bit of x,
given a single message from Alice [KN97].
DISJOINTNESS: Alice and Bob both hold strings x and y, and must determine whether there is any bit lo-
cation where both strings are 1 [Raz92]. Hardness of these problems can also be shown via “information
complexity”, which considers the information transmitted by any correct protocol [BYJKS04].

In the GAPHAMMING problem, Alice and Bob both have strings with the promise that their strings
have Hamming distance either less thanN/2−

√
N or greater thanN/2+

√
N . Via reductions, the hard-

ness of this problem is also Ω(N) [JKS08]. The linear hardness of GAPHAMMING can show hardness
of frequency moments of Ω(ε−2) [IW03, Woo04]; and Ω(ε−2/ log(1/ε)) for entropy estimation [CCM07].
Thus the algorithms for these problems are essentially optimal in terms of their dependency on ε.
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